Completely Randomized Design (CRD)

Dr. D S Dhakre

Visva Bharati, Sriniketan, West Bengal, India

Objective:

To Analyze Completely Randomized Design (CRD) with equal replications

The following table gives the yields (in kg per plot) of a vegetable using four treatments — A-Organic, B-Chemical, C-Mixed, and D-Control applied to each of four plots in a Completely Randomized Design (CRD). Test whether the treatments have the same effect on yield.

Yield (in kg per plot) of vegetable						
Treatment	Replications (R_j)				Total	Mean (Round figure)
A-Organic	50	55	52	58	$T_A = 215$	$\bar{Y}_A = 54$
B-Chemical	60	62	65	58	$T_{\rm B} = 245$	$\bar{Y}_B = 61$
C-Mixed	70	75	72	68	$T_{\rm C} = 285$	$\bar{Y}_C = 71$
D-Control	45	48	50	47	$T_{\rm D} = 190$	$\overline{Y}_D = 48$
Grand Total (GT) 935						

Solution:

Linear model

$$Y_{ij}\!=\mu\!+\!\alpha_{i}\!+\!\epsilon_{i\,j}\ ; \qquad (i\!=\!1,\!2,\hbox{---},k;j\!=\!1,\!2,\hbox{----,}r)$$

where Y_{ij} = Response of the j^{th} replication and i^{th} treatment

 μ = General mean effect

 $\alpha_i = i^{th}$ treatment effect

 ϵ_{ij} = error effect with mean=0 and variance = σ^2 [N(0, σ^2)]

Hypothesis

 H_0 : All treatments have equal effect on yield ($\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4$)

 H_l : All α_i 's are not equal

Here No. of Treatments (k) = 4, No. of Replications (r) = 4,

No. of Observations (n) = $k \times r = 16$

Correction Factor (C.F.) =
$$\frac{GT^2}{n} = \frac{(935)^2}{16} = 54639.06$$

Total Sum of Square (TSS) =
$$\sum_{i=1}^{k} \sum_{j=1}^{r} y^{2}_{ij} - \text{C.F.}$$

$$= (50^{2} + 55^{2} + ... + 50^{2} + 47^{2}) - 54639.06 = 1357.94$$

$$\sum_{i=1}^{k} T^{2}_{i}$$
Treatment Sum of Squares (SST) =
$$\frac{\sum_{i=1}^{k} T^{2}_{i}}{r} - C.F.$$

$$= \frac{(T^{2}_{A} + T^{2}_{B} + T^{2}_{C} + T^{2}_{D} + T^{2}_{E})}{r} - C.F.$$

$$= \frac{(215^{2} + 245^{2} + 2^{2} + 190^{2})}{4} - 54639.06$$

$$= 1254.69$$

Error Sum of Squares (SSE) = T.S.S. – S.S.T. = 1357.97 - 1254.69 = 103.25

ANOVA table

Source of	Degree of	Sum of	Mean Sum of		$F_{(3,12)}$	
variation	Freedom	Squares	Squares	F_{cal}	5%	1%
Treatments	k-1=3	1254.69	418.23	48.61**	3.49	5.95
Error	n-k=12	103.25	8.60			
Total	n-1=15					

Since F_{cal} =48.61 > F_{tab} =5.95, Therefore null hypothesis H_0 at (1%) level of significance with degree of freedom (3,12) will be rejected. Hence there is a highly significant difference between the treatments.

To test the treatments (pair wise) arranges means in descending order

$$\bar{Y}_C = 71, \ \bar{Y}_B = 61, \ \bar{Y}_A = 54, \ \bar{Y}_D = 48$$

Standard error of difference between two treatments

$$SE(d) = \sqrt{EMS\left(\frac{1}{r_i} + \frac{1}{r_j}\right)} = \sqrt{Ve\left(\frac{1}{r_i} + \frac{1}{r_j}\right)} = \sqrt{8.6\left(\frac{1}{4} + \frac{1}{4}\right)} = 2.07$$

Critical difference (C.D.) = SE(d) ×
$$t_{error d.f.}$$
 (5%) = 2.07 × t_{12} (5%) = 2.07 × 2.18 =4.52

Varieties	Difference of	Compare with CD value
	treatments mean	
С-В	10	Significant
C-A	18	Significant
C-D	24	Significant
B-A	8	Significant
B-D	14	Significant
A-D	6	Significant

Grand total =
$$215+245+285+190 = 935$$
 Grand Mean = $\frac{GT}{n} = \frac{935}{16} = 58.44$ $CV = \frac{\sqrt{MSE}}{y} \times 100 = \frac{\sqrt{8.6}}{58.44} \times 100 = 5.01\%$

Conclusion: -

Treatment C gives significantly higher yield than all other treatments. So, C is found to be superior one among four treatments.

Exercise-1:

To find out the yielding ability of five varieties of sesamum an experiment was conducted in the greenhouse using a CRD with four plots per variety. The results are given in the table below.

Seed yield of sesamum g./plot

V_1	V_2	V_3	V_4	V_5
25	25	24	20	14
21	28	24	17	15
21	24	16	16	13
18	25	21	19	11

Exercise-2

Objective:

To Analyze Completely Randomized Design (CRD) for unequal replications

A Completely Randomized Design was conducted with the three treatments A, B and C where treatment A is replicated 6 times and B is replicated 4 times and C is replicated 5 times. Analyze the data and state your conclusions.

	R_1	R_2	R ₃	R ₄	R_5	R_6
A	16.5	17	16	13	18	14
В	15	13.8	14	10.9		
C	18.2	24.2	25	28.9	21	